226 research outputs found

    Scallop: A Language for Neurosymbolic Programming

    Full text link
    We present Scallop, a language which combines the benefits of deep learning and logical reasoning. Scallop enables users to write a wide range of neurosymbolic applications and train them in a data- and compute-efficient manner. It achieves these goals through three key features: 1) a flexible symbolic representation that is based on the relational data model; 2) a declarative logic programming language that is based on Datalog and supports recursion, aggregation, and negation; and 3) a framework for automatic and efficient differentiable reasoning that is based on the theory of provenance semirings. We evaluate Scallop on a suite of eight neurosymbolic applications from the literature. Our evaluation demonstrates that Scallop is capable of expressing algorithmic reasoning in diverse and challenging AI tasks, provides a succinct interface for machine learning programmers to integrate logical domain knowledge, and yields solutions that are comparable or superior to state-of-the-art models in terms of accuracy. Furthermore, Scallop's solutions outperform these models in aspects such as runtime and data efficiency, interpretability, and generalizability

    A Unified Distributed Method for Constrained Networked Optimization via Saddle-Point Dynamics

    Full text link
    This paper develops a unified distributed method for solving two classes of constrained networked optimization problems, i.e., optimal consensus problem and resource allocation problem with non-identical set constraints. We first transform these two constrained networked optimization problems into a unified saddle-point problem framework with set constraints. Subsequently, two projection-based primal-dual algorithms via Optimistic Gradient Descent Ascent (OGDA) method and Extra-gradient (EG) method are developed for solving constrained saddle-point problems. It is shown that the developed algorithms achieve exact convergence to a saddle point with an ergodic convergence rate O(1/k)O(1/k) for general convex-concave functions. Based on the proposed primal-dual algorithms via saddle-point dynamics, we develop unified distributed algorithm design and convergence analysis for these two networked optimization problems. Finally, two numerical examples are presented to demonstrate the theoretical results

    DPF-Nutrition: Food Nutrition Estimation via Depth Prediction and Fusion

    Full text link
    A reasonable and balanced diet is essential for maintaining good health. With the advancements in deep learning, automated nutrition estimation method based on food images offers a promising solution for monitoring daily nutritional intake and promoting dietary health. While monocular image-based nutrition estimation is convenient, efficient, and economical, the challenge of limited accuracy remains a significant concern. To tackle this issue, we proposed DPF-Nutrition, an end-to-end nutrition estimation method using monocular images. In DPF-Nutrition, we introduced a depth prediction module to generate depth maps, thereby improving the accuracy of food portion estimation. Additionally, we designed an RGB-D fusion module that combined monocular images with the predicted depth information, resulting in better performance for nutrition estimation. To the best of our knowledge, this was the pioneering effort that integrated depth prediction and RGB-D fusion techniques in food nutrition estimation. Comprehensive experiments performed on Nutrition5k evaluated the effectiveness and efficiency of DPF-Nutrition

    Research Progress of Breast Tissue Marker Clips and Their Application in Neoadjuvant Therapy for Breast Cancer

    Get PDF
    Currently, breast cancer being of rapidly increasing incidence rates and as the most commonly diagnosed malignant tumor in breast surgery, has attracted much attention. Neoadjuvant therapy (NAT) has been proved to be beneficial for reducing tumor size and breast-conserving surgery. As a new type of metal localization marker, breast tissue marker clips can be used to precisely locate tumor tissue and improve cure rates. This review focuses on the marker clips and their significance in the diagnosis and treatment of neoadjuvant therapy for breast cancer, hoping to provide more clinical bases for research and promote this technology
    • …
    corecore